Low Impact Development

Presented by
Art Castle
(acastle@kitsaphba.com)
Home Builders Association of Kitsap County
February, 2005

Kitsap Home Builder Foundation Grant Application

- Develop Low Impact Development Standards Implementation for Kitsap County, Bremerton, Bainbridge Island, Port Orchard and Poulsbo
- Enable developers, builders, homeowners and jurisdiction to be have the option of using low impact development techniques to manage stormwater

Kitsap Home Builder Foundation Grant Application

- LID Education
 - Development and Construction Industry
 - County and City staff who review development and construction approval processes.
 - Public
- Develop Design Manual "How to" for industry and jurisdictions.

Kitsap Home Builder Foundation Grant Application

- \$182,550 from EPA "319" Clean Water funding through DOE with 25% HBA match
- Ranked 23 of 109 applications
- Grant for starting end of 2005 and completing in 2008. Goal is to start fall 2005 and have ordinances adopted by end of 2006

Kitsap Home Builder Foundation Grant Application

- Partners include
 - Bremerton, Poulsbo, Port Orchard, Bainbridge Island, Kitsap County
 - Kitsap Health District
 - Suquamish Tribe
 - Citizens for Responsible Planning
- Industry Leading with Market-Based Environmental Solutions as with our Build A Better Kitsap/BUILT GREEN program

What is Low Impact Development?

Low-Impact Development (LID)

- A sustainable stormwater management strategy that combines precision engineering with microscale controls that are <u>engineered</u>, <u>designed and integrated</u> into site features in order to maintain, restore or closely mimic pre-development watershed hydrologic <u>functions</u> (volume, recharge, evaporation and runoff).
- Reduces development and maintenance costs and promotes public participation/education in pollution prevention and maintenance of LID practices.

LID IS NOT:

- Conservation DesignNew UrbanismRestricted Impervious Percentage

LID IS:

A Multi-functional "customized" approach to stormwater management and environmental protection that can be integrated into any site design philosophy.

"UNIVERSAL APPLICATIONS"

Why Low Impact Development Was Conceived

- Improve Stormwater Technology BMP's
 - New Tools and Principles
- Reduce Stormwater Infrastructure Costs
- Reduce Development Costs
- Meet New Regulatory Requirements
- Resource Protection
- Urban Retrofit

- Safety
- Maintenance
- Inefficient Removal
- •Temp/Sediment/
- Frequency/Volume

Conventional vs. Low-Impact Development

Conventional

- "End-of-the-Pipe" Control
- Maintaining Peak Discharge Only
- Very Limited Control on Small Storms
- "Stuck in the 60's"

Low-Impact

- **Source Control**
- Mimic Pre-Development Hydrologic Conditions
- Full Control on Small Storms
- Pollution Prevention

Why LID Works

- Cumulative Impacts (Think Small)
- On-Site Treatment
- Uniform Distribution (Mimics)
- Promotes Resources Conservation
- Economically Sustainable (Small Scale)
- Public Participation / Education
 - Responsibility (Property Owner)
 - Vested Interest in Property Values

LID Benefits

- Restores Hydrologic Functions
- Economically Sustainable
 - Efficient Use of Space / Reduced Infrastructure
 - Property Value
 - Scale of Maintenance Burdens
 - Reduces Development Costs
- Multi-Objective
- Integrated Capitalization
- · New Tools for Urban Retrofit
- Practical / Simple / Universally Applicable
- Efficient Pollutant Removal

Construction Cost Comparison

Patux		
	Conventiona	Low Impact
		2 4 400 555
Grading /Roads	\$ 569,69	8 \$ 426,575
<u>StormDrains</u>	\$ 225,72	1 \$ 132,558
Stormwater Fees	\$ 260,85	8 \$ 10,530
Bioretention / Micro	\$ -	\$ 252,124
<u>Total</u>	\$ 1,086,27	7 \$ 821,787
Unit Cost	\$ 14,67	9 \$ 10,146
Lot Viold	7	4 81
Lot Yield	/	4 01

LID COSTS

- Cost Savings
 - No or Smaller Ponds
 - Less Piping
 - Fewer Structures
 - Less Curb / GuttersLandscaping
 - Less Paving
 - Less Grading
 - Maintenance
 - Energy Conservation

- Cost increases
 - Design
 - Grading
 - Site Investigation
 - Maintenance

Pollution Removal by Depth in Bioretention Facilities

		Removal (%)							
		Cu (@g/L)	Pb (@g/L)	Zn (®g/L)	P (mg/L)	TKN (mg/L)	NH _i + (mg/L)	NO₃⁻ (mg/L)	
Large Box	Upper	90	93	87	0	37	54	(-97)	
	Middle	93	>97	>96	73	60	86	(-194)	
	Lower	93	>97	>96	81	68	79	23	
Fiel	d	97±2	>95	>95	65±8	52±7	92±7	16±6	

Biological Pollutant Removal Plant / Soil Flora / Soil Chemistry

- Phytoremediation
 - Translocate
 - Accumulate
 - Metabolize
 - Volatilize
 - Detoxify
 - Degrade
 - Exudates
- Bioremediation

LID Practices (No Limit!)

"Creative Techniques to Use, Store, Detain and Recharge"

- Bioretention / Rain Gardens
- Strategic Grading
- Site Finger Printing
- Resource Conservation
- Flatter Wider Detention Swales
- Flatter Slopes
- Long Flow Paths
- Tree / Shrub Depression
- · Turf Depression
- Landscape Islands Storage
- Rooftop Detention /Retention
- Roof Leader Disconnection
- Parking Lot / Street Storage
- Smaller Culverts, Pipes & Inlets

- Alternative Surfaces
- Reduce Impervious Surface
- Surface Roughness Technology
- Rain Barrels / Cisterns / Water Use
- Catch Basins / Seepage Pits
- · Sidewalk Storage
- Vegetative Swales, Buffers & Strips
- Infiltration Swales & Trenches
- Eliminate Curb and Gutter
- Shoulder Vegetation
- · Maximize Sheet flow
- Maintain Drainage Patterns
- Reforestation
- Pollution Prevention.....

LID Design Procedure Highlights

- Site Analysis
- Determine Design Storm
- Maintain Flow Patterns and Tc
- Conservation and Prevention
- Develop LID CN
- Compensatory Techniques. Stress Volume Control then Detention or Hybrid for Peak

